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The number π is defined as the quotient of a
circular object’s circumference with its diameter.
In 5th or sixth grade (I can’t quite remember)
the teacher asked us to take round objects (coffee
cups, pots, balls, whatever we could find) and do
this measurement. In preparing this essay, I just
repeated this age old exercise, with my own coffee
cup and a little round device which measures the
humidity in my office (a hygrometer). Table 1 shows
what I measured with a primitive tape measure. C
and d denote measured perimeter and diameter, q
the computed quotient.

Object C (cm) d (cm) q

Cup 27.7 8.8 3.14773
Hygrometer 26.4 8.4 3.14286

Table 1: Measurements

Now, as we all know that π = 3.141592636....
it is clear that my method didn’t provide great
accuracy. Of course, I could have tried harder, with
a better tape measure and larger round objects. I
could also have repeated my measurement many
times and computed averages. I do, however, not
wish to waste anybody’s time here. The number π
was shown to be between 223/71 and 22/7 already
2200 years ago, by Archimedes, who used regular
polygons to approximate a circle (actually, a teacher
in my high school taught us that Archimedes had
already computed hundreds of digits, and I readily
believed this until a referee for this article taught
me otherwise; according to Wikipedia, π was known
to less than 10 digits until the year 1,000 (1),(2)).
There are now many algorithms one can use to
approximate π, as well as experiments. We know
that π is a transcendental number (meaning it is
neither rational nor algebraic), a property which
follows from what is known as the Lindemann-
Weierstrass Theorem. In particular, the digits of
π will never repeat periodically, nor can we expect
any pattern.

Let me mention a second simple experiment which
can be used to approximate π. In elementary me-
chanics one studies the pendulum, and after some

simplifications derives the relationship

T = 2π

√
l

g
,

where T is the period and l is the length of the
pendulum, and g = 9.80665 m/sec2 is standard
gravity (earth acceleration of a free falling object at
sea level). The appearance of π in this formula may
appear a bit as a mystery... until you understand
that the solution of the differential equation govern-
ing the pendulum motion approximates a circular
motion in phase space, and circles, of course, are
the underlying geometric objects. You could set
the generic task: See π, find the circle.

It is a standard exercise in a physics lab to
compute g by measuring T and l; conversely, if one
already knows g (from, say, free fall experiments),
one can use the formula to approximate π. However,
no higher level accuracy need to be expected,
because the formula itself is only an approximation
(derived as a linear approximation from the true
pendulum equations), reasonably accurate only for
small amplitudes. In addition, measurement errors
will affect the quantities T and l. If you wish to use
this experiment to find π your pendulum should be
a string of length l, with an attached weight that is
much heavier than the string (because the formula
is derived for such conditions).

I did actually do the experiment with a home-
made pendulum (made of a string with a golf ball
attached at one end). The length of this pendulum
from pivot point to the center of the golf ball was
105 cm (I did the best I could measuring this),
and this pendulum exhibited a frequency of 29
swings in 60 seconds. This gives T = 2.068965...
seconds, and inserting these data and the value of
g into the formula, I found π ≈ 3.1614.... I then
lengthened the string, producing a pendulum with
l = 114.5 cm, and measured that this pendulum
swung 56 times in 120 seconds, or T = 2.142857...
seconds. This gives π ≈ 3.1346...; the average of
both experiments is 3.148. Of course, it’s off, but
this “accuracy” exceeded my expectations.

For practical purposes it should never be neces-
sary to compute π to more than, say, 50 digits.
However, there is some interest in the methods
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themselves, as they tend to shed light on many
truths (or hidden truths) in geometry and analysis.

Consider the well-known expansion, known as the
Leibniz series,

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− ....

A bit of playing with your pocket calculator will
convince you that this is not a very good method
to compute the digits of π: the first four terms on
the right, multiplied by 4, give 2.895238... One has
to add many, many terms until reasonable accuracy
is obtained (actually, you can read off the formula
how many terms you have to include to compute
π to, say, 100 digits. Give it a try). Nevertheless,
the formula should intrigue your interest, because
as written, there is no hint why this should be
true at all. The hidden truth is that this formula
arises from an elementary trigonometric identity, an
integration and a so-called power series expansion,
all things we do in first year calculus, but which
were at the forefront of mathematical research some
250 years ago (Leonhard Euler, who would recently
have celebrated his 306th birthday, did much of the
research).

Here are the steps: We know that tan (π/4) =
1 (a line at 45 degrees counterclockwise from the
horizontal has slope 1, and this is where the circle
is hiding), so π/4 = tan−11. From Calculus we know
that

tan−11 =
∫ 1

0

1

1 + x2
dx,

and if we use the geometric series

1

1 + x2
= 1− x2 + x4 − x6 + ....

and integrate term by term, with
∫ 1
0 x

k dx = 1
k+1

,
we find exactly Leibniz’ formula. Of course, we have
to somehow justify the manipulations with infinitely
many terms. This can be and is done in university
textbooks on real analysis.

The above steps also show that

tan−1(x) = x− x3

3
+
x5

5
− x7

7
+ . . . , (1)

which allows approximation of all values of the
inverse tangent. Note that this works better (the
series on the right converges faster) for smaller
values of x. Further, the trigonometric identity

tan (α + β) =
tanα + tan β

1− tanα tan β

may be used (with some work) to derive the formula
(attributed to a man named Machin, and first
published in 1706)

π

4
= 4 tan−1

1

5
− tan−1

1

239
. (2)

This offers a much better way to approximate π,
because for x = 1/5 and x = 1/239 the right hand
side of (1) converges much faster. Again, feel free
to play with a pocket calculator: for example, the
final displayed term in (1), evaluated for x = 1/5, is
0.0000018286... Much more on the power of Machin-
like formulas to compute π with great accuracy can
be found in (3; 4). In combination with modern
supercomputers, these formulas allow accuracy to
billions of digits.

A different and powerful formula is known as the
Bailey-Borwein-Plouffe series

π = a0 +
1

16
a1 +

1

162a2 +
1

163a3 + ....

where

an =
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

for n = 0, 1, 2, ..... Adding just the first two
terms on the right gives 3.141422466... This series
converges to π at a very impressive rate. Two
other things are rather remarkable about it: First,
the derivation of this identity requires no more
than clever high school algebra and elementary
integrations (involving trigonometric functions; this
is, again, where the circle is hiding) and could have
been done centuries ago (but it was first published
only in the 1990s (5) ). Second, in the hexadecimal
system (based on the base 16, vs. 10 for the decimal
system), this formula allows computing digits of π
without knowing all previous digits.

In passing, the number π also shows up in the
identities

eiπ + 1 = 0

(which nicely combines five fundamental real and
complex numbers), and∫ ∞

0
e−x

2

dx =
1

2

√
π

(which is of major importance in statistics). I leave
it as a challenge to the reader to find “where the
circle is hiding” in these identities.

So, I have shown you four ways of getting to
π, two “experimental,” two computational. With
more effort, time and information, one could fill a



book with such methods (and, to be sure, most of
its content is already on the internet). I will provide
one more example, this time from a (hypothetical)
billiard game. This was first pointed out by Gregory
Galperin (6) and is a fairly recent observation.

Consider two fully elastic billiard balls, which
move on a straight line (in one dimension), without
gravitational forces or friction, and with fully elas-
tic collisions (meaning that collisions between the
balls preserve momentum and kinetic energy). We
present a scenario in which there is a solid elastic
wall at x = 0, ball A (with initial speed 0) has mass
1, radius 1 and is centered at x = 3, and ball B has
mass m ≥ 1, radius 1, velocity −1 and is centered
at x=6 (the radii and initial centers are actually of
no importance; what matters is that the balls are
initially apart, and ball B is set up to hit ball A
from the right at speed 1). See Figure 1.
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Fig. 1: Two elastic spheres

If m = 1, then the balls are of equal mass and
it is very predictable what will happen: Ball B will
hit ball A, they exchange velocities, then ball A hits
the wall, bounces back with velocity +1, hits ball B
a second time, and ball B flies off with velocity +1.
We observe one wall collision and three collisions
in all. What happens if ball B is heavier than
ball A, meaning m > 1? Momentum and energy
conservation still uniquely determine the outcome
of each collision: If, say, we let u0 be the initial
velocity of ball A (we took u0 = 0) and v0 the
initial velocity of ball B (we took v0 = −1) then
the velocities u′0, v

′
0 after the collision will be

u′0 = u0 −
2m

m+ 1
(u0 − v0) (3)

v′0 = v0 +
2

m+ 1
(u0 − v0) (4)

This is known as the collision transformation (a
well-known concept in the kinetic theory of gases).
One readily checks that

u′0 +mv′0 = u0 +mv0

(momentum conservation), and

(u′0)
2 +m(v′0)

2 = (u0)
2 +m(v0)

2 (5)

(energy conservation). The collision transformation
is uniquely determined by these two properties.

Ball A will now bounce off the wall and head
back right; it will collide again with ball B, but
as ball B is heavier than ball A, this will not be
the last collision—ball A will head for the wall
again, bounce back, meet again with ball B, and
so on. Figure 2 show what this looks like in x, t
“space” time; for convenience, the particles have
been shrunk to points (we mentioned before that
the size of the particles did not matter).

B x

t

A

Fig. 2: Many collisions in spacetime

We need a little bit of terminology to carry on.
Suppose that u0, u1, u2, . . . denote the velocities
of sphere A initially, after the first wall bounce,
then after the second wall bounce, etc., and that
v0, v1, v2, . . . denote the velocities of sphere B ini-
tially, after the first collision with A, then after
the second collision with A, etc. From the collision
transformation we find u1 = −u′0, v1 = v′0, or

u1 =
m− 1

m+ 1
u0 −

2m

m+ 1
v0 (6)

v1 =
2

m+ 1
u0 +

m− 1

m+ 1
v0 (7)



The two particles were originally on collision
course (or in a collision configuration) because
v0 − u0 = −1 < 0, and if v1 − u1 < 0, they will
collide again. We can then compute (u2, v2), (u3, v3)
etc., until we find a number k such that, for the first
time, vk− uk > 0. Particle A can then not catch up
with particle B, and there will be no more collisions.

Using a computer, one can find the number k
with a little bit of effort. Table 2 shows k as a
function of m, the mass of particle B, and, following
Galperin’s idea, we have taken m = 100n, where
n = 0, 1, 2, 3, . . . .

m N (total) M (wall touches)

1 3 1
100 31 15

10,000 314 157
106 3142 . . .
108 31415 . . .

Table 2: Number of collisions

Here, N and M are the numbers of total collisions
and wall collisions, respectively. Remember that
particle A is initially at rest, and particle B moves
initially at v0 = −1.

It appears that the number of all collisions (in-
cluding the wall touches of ball A) produce the
digits of π, and the number of wall touches is
half or one less than half of the corresponding
approximation of π. The latter is easily understood-
it is possible that balls A and B have a final collision
such that A retains a positive velocity and will not
return to the wall (as sketched in 2). But why
should this experiment produce the digits of π at
all? Where is the circle hiding? Before we answer
this riddle, let us point out that this “experiment”
is really a thought experiment which you can’t do in
reality. Because, even to get just four digits of π you
have to have ball B a million times heavier than ball
A, and, of course, both have to be perfectly elastic
and not be subject to friction or gravity.

But where is the circle? The explanation is
hidden in the properties of the transformation (6,7),
although another idea is necessary. This idea has
to do with the identity (5), which provides the
conservation of kinetic energy. It turns out that
things become simpler if one rescales the speeds
v0, v1, v2 etc. of ball B by defining

w0 =
√
mv0, w1 =

√
mv1,

etc.

The energy conservation (5) becomes then the
simpler equation

(u′0)
2 + (w′0)

2 = (u0)
2 + (w0)

2 (8)

and the collision transformation (7) becomes

u1 =
m− 1

m+ 1
u0 −

2
√
m

m+ 1
w0 (9)

w1 =
2
√
m

m+ 1
u0 +

m− 1

m+ 1
w0 (10)

This is the same transformation as before, but
the speed coordinate for ball B has been rescaled!
In this new coordinate system, the equations (9,10)
are where the circle is hiding: If you set

α =
m− 1

m+ 1
, β =

2
√
m

m+ 1

then one immediately checks that α2 + β2 = 1,
and therefore there is an angle θ such that cos θ =
α, sin θ = β. Geometrically this means that in the
u−w plane, (9,10) is a rotation in the counterclock-
wise sense by the angle θ, and in our setup we begin
the rotation with the initial point (0,−

√
m). The

speeds (uj, wj) computed from repeated application
of (9, 10) arise from repeated rotations by θ in the
u − w plane for j = 0, 1, 2, . . ., as shown in Figure
3, or as expressed by the transformation (rotation)(

uj+1

wj+1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
uj
wj

)

The energy conservation as stated in (8) is the
key ingredient in this: It implies that the collision
transformation in this context must conserve the
length of the vector (u0, w0), and only rotations or
reflections do this.

\theta

u

w

   m
1/2

w= m   
1/2

u

.....

Fig. 3: Collisions are rotations!



We are almost there! There will be no more
collisions after the first k for which vk > uk, or,
equivalently, wk >

√
muk. Hence we have to find

out for which k the sum of the angles will have
crossed the line with slope

√
m. From the picture,

this means we are looking for the smallest k for
which tan (kθ − π

2
) >
√
m.

Now, let us consider a large m. Then tan−1
√
m ≈

π
2

(or, there have been enough collisions to go almost
through a half-circle, meaning kθ ≈ π.) We can
also approximate θ in terms of m by observing
that α = cos θ ≈ 1 − θ2

2
, hence θ ≈ 2√

m+1
.

Putting it all together gives k ≈ π
√
m+1
2

, and this
is an approximation of the expected number of
wall touches: For example, for m = 104, we find
2k ≈ 100π ≈ 314.

There is much more about this on the internet, in
particular in the article (6). I would like to thank
my colleague Peter Dukes for bringing this way of
finding π to my attention.
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